Enten-eller

I dag, da jeg underviste i Beregnelighed og kompleksitet, undrede flere studerende sig uafhængigt af hinanden over en opgave, jeg stillede, hvor man skulle finde en beregnbar funktion mellem to mængder af strenge, A og B. Det eneste, opgaven fortalte, var at der fandtes strenge, som var elementer i B og andre strenge, der ikke var med i B.

Så kunne man derfor definere funktionen, så den på elementer fra A gav en fast streng u fra B som resultat og fra elementer uden for A gav en fast streng v uden for B som resultat. Funktionen er endda beregnbar, hvis man med en algoritme kan afgøre om strenge er elementer i A. Men de studerende, der undrede sig, syntes at det virkede som snyd. Vi får aldrig at vide, hvad u og v egentlig er. Så vi ved egentlig ikke, hvordan funktionen skal beregnes.

Og jeg måtte give dem ret. Hvis funktionen, som jeg har skrevet ovenfor, er en funktion over de naturlige tal, er den veldefineret og den er endda også beregnelig. Den er nemlig en konstant funktion, og konstante funktioner er nemme at beregne. Vi ved bare ikke, om dens værdi altid er 1 eller altid er 0. Men på en eller måde synes man, at beregningen af funktionsværdien kræver at vi skal vide om der er liv uden for solsystemet eller ej.

I det omfang jeg overhovedet kan siges at være matematiker, er jeg konstruktiv matematiker, og de studerendes betænkeligheder er helt rimelige, hvis man spørger mig. Det store underliggende problem er nemlig, at påstanden Enten er der liv i solsystemet eller også er der ikke har en sandhedsværdi ifølge klassisk logik, men er meningsløs i konstruktiv matematik. I konstruktiv matematik kan jeg nemlig kun bevise en påstand på formen P eller Q ved at præsentere enten et bevis for påstanden eller et bevis for påstanden Q. Så jeg skal enten bevise, at der er liv uden for solsystemet eller bevise, at der ikke er. (Det er lidt svært.)